

 [image: pypi] [https://pypi.python.org/pypi/benzina] [image: docs] [https://benzina.readthedocs.io/en/latest]

Бензина / Benzina

Table of Contents

	Examples
	ImageNet loading in PyTorch

	Datasets List
	General Description of a Dataset

	ImageNet 2012

	Objectives
	Further feature points

	Known limitations and important notes
	As of September 2020

	Roadmap
	Summer 2019

	Autumn 2019

	How to Contribute
	Submitting bugs

	Contributing changes

	API
	benzina.torch.dataloader

	benzina.torch.dataset

	benzina.torch.operations

Description of the project

Benzina is an image loading library that accelerates image loading and preprocessing
by making use of the hardware decoder in NVIDIA’s GPUs.

Since it minimize the use of the CPU and of the GPU computing units, it’s easier
to reach saturation of GPU computing power / CPU. In our tests using ResNet18 models
in PyTorch on the ImageNet 2012 dataset, we could observe an increase by 2.4x the
amount of images loaded, preprocessed then processed by the model when using a
single CPU and GPU:

	Data loader

	CPU

	CPU Workers

	GPU

	GPU compute speed

	Pipeline effective speed

	PyTorch ImageFolder

	Intel Xeon E5-2623*

	2

	Tesla V100*

	1050 img/s

	400 img/s

	Benzina

	Intel Xeon E5-2623*

	1

	Tesla V100*

	1050 img/s

	960 img/s

Note

	Intel Xeon E5-2623 is the Xeon E5-2623 v3 @ 3.00 GHz version

	Tesla V100 is the Tesla V100 PCIE 16GB version

The name “Benzina” is a phonetic transliteration of the Ukrainian word “Бензина”, meaning “gasoline” (or “petrol”).

Indices and tables

	Index

	Module Index

	Search Page

Examples

ImageNet loading in PyTorch

As long as your dataset is converted into Benzina’s data format, you can load
it to train a PyTorch model in a few lines of code. Here is an example
demonstrating how this can be done with an ImageNet dataset. It is based on the
ImageNet example from PyTorch [https://github.com/pytorch/examples/tree/master/imagenet]

import torch
import benzina.torch as bz
import benzina.torch.operations as ops

seed = 1234
torch.manual_seed(seed)

Dataset
train_dataset = bz.dataset.ImageNet("path/to/dataset", split="train")
val_dataset = bz.dataset.ImageNet("path/to/dataset", split="val")

Dataloaders
bias = ops.ConstantBiasTransform(bias=(0.485 * 255, 0.456 * 255, 0.406 * 255))
std = ops.ConstantNormTransform(norm=(0.229 * 255, 0.224 * 255, 0.225 * 255))

train_loader = bz.DataLoader(
 train_dataset,
 shape=(224, 224),
 batch_size=256,
 shuffle=True,
 seed=seed,
 bias_transform=bias,
 norm_transform=std,
 warp_transform=ops.SimilarityTransform(scale=(0.08, 1.0),
 ratio=(3./4., 4./3.),
 flip_h=0.5,
 random_crop=True))
val_loader = bz.DataLoader(
 val_dataset,
 shape=(224, 224),
 batch_size=256,
 shuffle=False,
 seed=seed,
 bias_transform=bias,
 norm_transform=std,
 warp_transform=ops.CenterResizedCrop(224/256)))

for epoch in range(1, 10):
 # train for one epoch
 train(train_dataloader, ...)

 # evaluate on validation set
 accuracy = validate(valid_dataloader, ...)

In the example above, two benzina.torch.dataset.ImageNet are first created
with the location of the dataset and the desired split specified.

Note

To be able to quickly load your dataset with the hardware decoder of a GPU,
Benzina needs the data to be converted in its own format embedding H.265
images.

train_dataset = bz.dataset.ImageNet("path/to/dataset", split="train")
val_dataset = bz.dataset.ImageNet("path/to/dataset", split="val")

Then the transformations to apply to the dataset are defined. It is usually a
good idea to normalize the data based on its statistical bias and standard
deviation which can be done with Benzina by using its
benzina.torch.operations.ConstantBiasTransform and
benzina.torch.operations.ConstantNormTransform respectively.

Note

	benzina.torch.operations.ConstantBiasTransform will substract the bias
from the images’ RGB channels

	benzina.torch.operations.ConstantNormTransform will multiply the norm
with the images’ RGB channels

bias = ops.ConstantBiasTransform(bias=(123.675, 116.28 , 103.53))
std = ops.ConstantNormTransform(norm=(58.395, 57.12 , 57.375))

The dataloaders are now ready to be instantiated. In this example, the
dataset’s images are all of size 512 x 512 by the dataset specifications. A
random crop resized to 224 x 224 and a random horizontal flip will be applied
to the images prior feeding them to the model. In Benzina, this is done by
defining the size of the output tensor with the dataloader’s shape argument
and using Benzina’s similarity transform.

In the case of the validation transform, an alias to a specific similarity
transform, which applies a center crop of edges scale 224 / 256, resize the
cropped section to have its smaller edge matched to 224 then center a crop of
224 x 224. Another maybe more intuitive way to describe this transformation is
to see it as a resize to have the smaller edge matched to 256 then center a
crop of 224 x 224.

Note

It’s useful to know that benzina.torch.operations.SimilarityTransform
will automatically center the output frame on the center of the input image.
This makes a vanilla benzina.torch.operations.SimilarityTransform
equivalent a center crop of size of the output.

train_loader = bz.DataLoader(
 train_dataset,
 shape=(224, 224),
 batch_size=256,
 shuffle=True,
 seed=seed,
 bias_transform=bias,
 norm_transform=std,
 warp_transform=ops.SimilarityTransform(scale=(0.08, 1.0),
 ratio=(3./4., 4./3.),
 flip_h=0.5,
 random_crop=True))
val_loader = bz.DataLoader(
 val_dataset,
 shape=(224, 224),
 batch_size=256,
 shuffle=False,
 seed=seed,
 bias_transform=bias,
 norm_transform=std,
 warp_transform=ops.CenterResizedCrop(224/256))

As demonstrated in the full example loading ImageNet to feed a PyTorch model [https://github.com/obilaniu/Benzina/blob/master/Users/satya/travail/examples/python/imagenet],
code change between a pure PyTorch implementation and an implementation using
Benzina holds in only a few lines.

$ diff -ty --suppress-common-lines examples/python/imagenet/main.py examples/python/imagenet/imagenet_pytorch.py

 > import torchvision.transforms as transforms
 > import torchvision.datasets as datasets
Benzina ### <
import benzina.torch as bz <
import benzina.torch.operations as ops <
Benzina - end ### <
 <
 > parser.add_argument('-j', '--workers', default=4, type=int, met
 > help='number of data loading workers (defau
 ### Benzina ### | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406]
 train_dataset = bz.dataset.ImageNet(args.data, split="train | std=[0.229, 0.224, 0.225])
 <
 bias = ops.ConstantBiasTransform(bias=(0.485 * 255, 0.456 * <
 std = ops.ConstantNormTransform(norm=(0.229 * 255, 0.224 * <
 train_loader = bz.DataLoader(| train_dataset = datasets.ImageNet(
 train_dataset, shape=(224, 224), batch_size=args.batch_ | args.data, "train",
 shuffle=True, seed=args.seed, | transforms.Compose([
 bias_transform=bias, | transforms.RandomResizedCrop(224),
 norm_transform=std, | transforms.RandomHorizontalFlip(),
 warp_transform=ops.SimilarityTransform(| transforms.ToTensor(),
 scale=(0.08, 1.0), | normalize,
 ratio=(3./4., 4./3.), |]))
 flip_h=0.5, |
 random_crop=True)) | train_loader = torch.utils.data.DataLoader(
 | train_dataset, batch_size=args.batch_size, shuffle=True
 val_loader = bz.DataLoader(| num_workers=args.workers, pin_memory=True)
 bz.dataset.ImageNet(args.data, split="val"), shape=(224 |
 batch_size=args.batch_size, shuffle=args.batch_size, se | val_loader = torch.utils.data.DataLoader(
 bias_transform=bias, | datasets.ImageNet(args.data, "val", transforms.Compose(
 norm_transform=std, | transforms.Resize(256),
 warp_transform=ops.CenterResizedCrop(224/256)) | transforms.CenterCrop(224),
 ### Benzina - end ### | transforms.ToTensor(),
 > normalize,
 >])),
 > batch_size=args.batch_size, shuffle=False,
 > num_workers=args.workers, pin_memory=True)

Datasets List

General Description of a Dataset

Dataset Composition

A Benzina dataset is, in essence, an indexing over a concatenation of inputs,
targets and possibly filenames with indexing

Dataset Structure

A Benzina dataset is structured using the mp4 format

	ftyp

	Defines the compatibilities of the mp4 container

	mdat

	Concatenation in 2-3 blocks of the inputs, targets and possibly filenames

	moov

	Contains the metadata needed to load and present the raw data of mdat

	mvhd

	Defines the timescale and the duration of the container

	timescale

	How many units elapse in 1 second

	duration

	Duration of the container in timescale units

	next_track_id

	The id of the next track that could be appended to moov

	trak

	
	
	Benzina input samples track: This is the first track and it references

	all the input samples

	Benzina target track

	Benzina filename track: This track is optional

	
	Video track: This track is optional. If present it should be

	positioned last

Each track can have a train, validation and test variants to
reference the sets

	tkhd

	Defines the resolution of the video and if the track should
be displayed by an mp4 player

	flags

	Defines if the track should be displayed

	width

	Width of the video

	height

	Height of the video

	mdia

	Contains definitions related to the media type of the data

	mdhd

	Redefines the timescale and the duration for the track

	timescale

	How many units elapse in 1 second

	duration

	Duration of the track in timescale units

	hdlr

	Defines the media type of the track

	handler_type

	Defines the type of handler that should
be used to decode the data referenced by the track

	name

	Human readable name for the track type
(used for debugging)

	minf

	Defines the characteristics of the media in the track

	stbl

	Defines the data indexing of the media samples
in the track along with coding information, if
needed, to decode them

	stsd

	Provides the information needed to decode
the media samples

	stts

	Defines the mapping from decoding time
to sample number

	sample_count

	The number of samples in
the track

	sample_delta

	The interval in timescale
units for which a new sample
should be decoded

	stsz

	Defines the size of each samples

	sample_count

	Number of samples in the
track

	entry_size

	Size of the sample. This field
is repeated for each sample

	stsc

	Defines the chunks splitting the data

	stco

	Defines the chunks offset

	entry_count

	Number of chunks

	chunk_offset

	The chunk offset. This field
is repeated for each chunk

Dataset’s Input Sample Structure

A Benzina dataset’s input sample can also be structured using the mp4 format.
It is roughly the same as the dataset’s structure with the differences that
mdat will contains the raw concatenation of a single input, its target,
possibly filename and possibly a 512 x 512 thumbnails stream.

ImageNet 2012

ImageNet 2012 [http://image-net.org/] classification dataset. It contains
two size of the images along with their classification target and filename:

	Resized high resolution images each with a smaller edge of at most 512 while
preserving the aspect ratio. This set is accessed by referencing the
bzna_input track of the input samples.

	Resized images each with a longer edge of at most 512 while preserving the
aspect ratio. This set is accessed by referencing the bzna_thumb track of
the input samples.

The dataset is represented by ImageNet which
simplifies the iteration of the data as a classification dataset.

Warning

81 images are currently missing from the dataset and 111 had to be first
transcoded to PNG prior to the final H.265 format. More details can be found
in the dataset’s README.

Warning

High resolution images stored in the the bzna_input track of the input
samples are currently not available through the
DataLoader. Their widely varying sizes
prevent them from being decoded using a single hardware decoder
configuration. The selected solution is to represent the images in the HEIF
format which will be completed in future development.

Dataset Composition

The dataset is composed of a train set, followed by a validation set then a
test set for a total of 1 431 167 entries. Targets and filenames are provided
for each sets:

	
Train set

Entries 1 to 1281167 (1 281 167 entries)

	
Validation set

Entries 1281168 to 1331167 (50 000 entries)

	
Test set

Entries 1331168 to 1431167 (100 000 entries)

Dataset Structure

ilsvrc2012.bzna

	ftyp

	Defines the compatibilities of the mp4 container

	major_brand

	isom

	minor_version

	0

	compatible_brands

	bzna, isom

	mdat

	Raw concatenation in 3 blocks of the images, targets and filenames

	Concatenation of .mp4 files containing a single image, a thumbnail of a
maximum size of 512 x 512 if the image does not already fit this resolution,
the image’s original filename and the target associated with the image

	Concatenation of images’ targets as little-endian int64

	Concatenation of images’ original filename

	moov

	Contains the metadata needed to load and present the raw data of mdat

	mvhd

	Defines the timescale and the duration of the container

	timescale

	20

	duration

	20 * 1 431 167

	next_track_id

	The id of the next track that could be appended to moov

	trak

	Benzina input samples track

This track references all the images of the dataset

	tkhd

	Defines the resolution of the video and if the track should
be displayed by an mp4 player

	flags

	000000 – This value informs that the track is not
for display purpose

	width

	0.0 – This value reflects the variance in size of the frames

	height

	0.0 – This value reflects the variance in size of the frames

	mdia

	Contains definitions related to the media type of the data

	mdhd

	Redefines the timescale and the duration for the track

	timescale

	20

	duration

	20 * 1 431 167

	hdlr

	Defines the media type of the track

	handler_type

	meta

	name

	bzna_input

	minf

	Defines the characteristics of the media in the track

	nmhd

	No specific media header is identified for the track

	stbl

	Defines the data indexing of the media samples
in the track along with coding information, if
needed, to decode them

	stsd

	Provides the information needed to decode
the media samples

	mett

	Defines the metadata as being text based

	mime_format

	application/octet-stream

	stts

	Defines the mapping from decoding time
to sample number

	sample_count

	1 431 167

	sample_delta

	20

	stsz

	Defines the size of each samples

	sample_count

	1 431 167

	entry_size

	Size of the sample. This field
is repeated for each sample

	stsc

	Defines the chunks splitting the data

	first_chunk

	1

	samples_per_chunk

	1

	sample_description_index

	1

This definition means to consider that
all samples are contained in their own chunk

	stco

	Defines the chunks offset

	entry_count

	1 431 167

	chunk_offset

	The chunk offset. This field
is repeated for each chunk,
i.e. for each sample

	trak

	Benzina target track

This track is roughly the same as the Benzina input track with the
following differences

	mdia

	Contains definitions related to the media type of the data

	hdlr

	Defines the media type of the track

	handler_type

	meta

	name

	bzna_target

	trak

	Benzina filename track

This track is roughly the same as the Benzina input track with the
following differences

	tkhd

	Defines the resolution of the video and if the track should
be displayed by an mp4 player

	flags

	000003 – This value informs that the track is enabled
and can be used in the presentation

	width

	0.0 – This value informs that no width has be predefined
for this track

	height

	0.0 – This value informs that no height has be predefined
for this track

	mdia

	Contains definitions related to the media type of the data

	hdlr

	Defines the media type of the track

	handler_type

	meta

	name

	bzna_fname

	minf

	Defines the characteristics of the media in the track

	stbl

	Defines the data indexing of the media samples
in the track along with coding information, if
needed, to decode them

	stsd

	Provides the information needed to decode
the media samples

	mett

	Defines the metadata as being text based

	mime_format

	text/plain

	trak

	Video track

This track allows to play the thumbnails of the dataset’s frames

	tkhd

	Defines the resolution of the video and if the track should
be displayed by an mp4 player

	flags

	000003 – This value informs that the track is enabled
and can be used in the presentation

	width

	512.0

	height

	512.0

	mdia

	Contains definitions related to the media type of the data

	mdhd

	Redefines the timescale and the duration for the track

	timescale

	20

	duration

	1 431 167

	hdlr

	Defines the media type of the track

	handler_type

	vide

	name

	VideoHandler

	minf

	Defines the characteristics of the media in the track

	vmhd

	Video media header is identified for the track

	stbl

	Defines the data indexing of the media samples
in the track along with coding information, if
needed, to decode them

	stsd

	Provides the information needed to decode
the media samples

	avc1

	Defines the AVC coding information

	width

	512

	height

	512

	horizresolution

	72

	horizresolution

	72

	stts

	Defines the mapping from decoding time
to sample number

	sample_count

	1 431 167

	sample_delta

	1

	stsz

	Defines the size of each samples

	sample_count

	1 431 167

	entry_size

	Size of the sample. This field
is repeated for each sample

	stsc

	Defines the chunks splitting the data

	first_chunk

	1

	samples_per_chunk

	1

	sample_description_index

	1

This definition means to consider that
all samples are contained in their own chunk

	stco

	Defines the chunks offset

	entry_count

	1 431 167

	chunk_offset

	The chunk offset. This field
is repeated for each chunk,
i.e. for each sample

Dataset’s Input Samples Structure

A Benzina ImageNet dataset’s input sample is structured using the mp4 format.

	ftyp

	Defines the compatibilities of the mp4 container

	major_brand

	isom

	minor_version

	0

	compatible_brands

	bzna, isom

	mdat

	Raw concatenation of the image, thumbnail, target and filename:

	A single image in H.265 format. The image is put in a frame with a size
of a product of 512 in the 2 dimensions. The padding to make the image
fit is filled with a smear of the image’s borders

	A thumbnail in H.265 format. The image is put in a frame of size 512 x 512.
The image is first resized to have its longest side be of 512. The padding
to make the thumbnail fit the frame is filled with a smear of the image’s
borders. There will be no explicit thumbnail if the image already fit the
thumbnail’s frame

	The image’s target in a little-endian int64

	The image’s original filename

	moov

	Contains the metadata needed to load and present the raw data of mdat

	mvhd

	Defines the timescale and the duration of the container

	timescale

	20

	duration

	20

	next_track_id

	The id of the next track that could be appended to moov

	trak

	Benzina input track

This track references an image

	tkhd

	Defines the resolution of the video and if the track should
be displayed by an mp4 player

	flags

	000000 – This value informs that the track is not
for display purpose

	width

	Width of the image without padding

	height

	Height of the image without padding

	mdia

	Contains definitions related to the media type of the data

	mdhd

	Redefines the timescale and the duration for the track

	timescale

	20

	duration

	20

	hdlr

	Defines the media type of the track

	handler_type

	vide

	name

	bzna_input

	minf

	Defines the characteristics of the media in the track

	vmhd

	Video media header is identified for the track

	stbl

	Defines the data indexing of the media samples
in the track along with coding information, if
needed, to decode them

	stsd

	Provides the information needed to decode
the media samples

	avc1

	Defines the AVC coding information

	width

	Width of the image’s frame.
This is a product of 512

	height

	Height of the image’s frame.
This is a product of 512

	horizresolution

	72

	horizresolution

	72

	clap

	Defines the clean aperture
of the image to remove the
padding

	clean_aperture_width_n

	Width of the image without padding

	clean_aperture_width_d

	1

	clean_aperture_height_n

	Height of the image without padding

	clean_aperture_height_d

	1

	horiz_off_n

	The negative value of the width’s padding

	horiz_off_d

	2

	vert_off_n

	The negative value of the height’s padding

	vert_off_d

	2

	stts

	Defines the mapping from decoding time
to sample number

	sample_count

	1

	sample_delta

	20

	stsz

	Defines the size of each samples

	sample_count

	1

	entry_size

	Size of the input

	stsc

	Defines the chunks splitting the data

	first_chunk

	1

	samples_per_chunk

	1

	sample_description_index

	1

	stco

	Defines the chunks offset

	entry_count

	1

	chunk_offset

	The chunk offset

	trak

	Benzina thumbnail track

This track references an image’s thumbnail. If the image already fits
a thumbnail’s frame, then this track will reference the same data as
in the Benzina input track. In any case, it is roughly the same as
the Benzina input track with the following differences

	tkhd

	Defines the resolution of the video and if the track should
be displayed by an mp4 player

	flags

	000003 – This value informs that the track is enabled
and can be used in the presentation

	width

	Width of the thumbnail without padding

	height

	Height of the thumbnail without padding

	mdia

	Contains definitions related to the media type of the data

	hdlr

	Defines the media type of the track

	handler_type

	vide

	name

	bzna_thumb

	trak

	Benzina target track

	tkhd

	Defines the resolution of the video and if the track should
be displayed by an mp4 player

	flags

	000000 – This value informs that the track is not
for display purpose

	width

	0.0 – This value informs that the width has not been
predefined for this track

	height

	0.0 – This value informs that no height has not been
predefined for this track

	mdia

	Contains definitions related to the media type of the data

	mdhd

	Redefines the timescale and the duration for the track

	timescale

	20

	duration

	20

	hdlr

	Defines the media type of the track

	handler_type

	meta

	name

	bzna_target

	minf

	Defines the characteristics of the media in the track

	nmhd

	No specific media header is identified for the track

	stbl

	Defines the data indexing of the media samples
in the track along with coding information, if
needed, to decode them

	stsd

	Provides the information needed to decode
the media samples

	mett

	Defines the metadata as being text based

	mime_format

	application/octet-stream

	trak

	Benzina filename track

This track is roughly the same as the Benzina target track with the
following differences

	tkhd

	Defines the resolution of the video and if the track should
be displayed by an mp4 player

	flags

	000003 – This value informs that the track is enabled
and can be used in the presentation

	width

	0.0 – This value informs that no width has be predefined
for this track

	height

	0.0 – This value informs that no height has be predefined
for this track

	mdia

	Contains definitions related to the media type of the data

	hdlr

	Defines the media type of the track

	handler_type

	meta

	name

	bzna_fname

	minf

	Defines the characteristics of the media in the track

	stbl

	Defines the data indexing of the media samples
in the track along with coding information, if
needed, to decode them

	stsd

	Provides the information needed to decode
the media samples

	mett

	Defines the metadata as being text based

	mime_format

	text/plain

Objectives

In much of the work in the field of machine learning and deep learning, a bottleneck exists in the dataloading phase itself. This is becoming increasingly recognised as an issue which needs to be solved.

Benzina aims to become a go-to tool for dataloading large datasets. Other tools exist, such as Dali [https://docs.nvidia.com/deeplearning/sdk/dali-developer-guide/docs/index.html]. Yet Benzina concentrates itself on two aspects :

	Highest level of performance for dataloading using GPU as loading device

	Creation of a generalist storage format as a single file facilitating distribution of datasets and useful in the context of file system limits.

Further feature points

	Generalist DNN framework methods provided to integrate Benzina to PyTorch and TensorFlow

	Command line programs will be created to assist in Benzina - compatible datasets

	API interface to interact with Benzina

Known limitations and important notes

As of September 2020

	No TensorFlow integration

	Currently only supports ImageNet

	Unknown effect on model accuracy of transcoding from various JPEG formats to
H.265

	Current transcoding filters failed on 81 images of the ImageNet 2012
dataset forcing them to be excluded. More information can be found in the
dataset’s README.

	Current transcoding filters required 111 images of the ImageNet 2012
dataset to first be transcoded to PNG prior to the final H.265 format. More
information can be found in the dataset’s README.

	High resolution images stored in the
bzna_input track of the input samples are currently
not available through the Dataloader. Their varying size prevent
them from being decoded using a single hardware decoder configuration. The
selected solution is to represent the images in the HEIF format which will be
completed in future development.

	It is currently not possible to compose transformations like you can with
torchvision.transforms.Compose but
SimilarityTransform should cover most
of the necessary images transformations.

	SimilarityTransform and
RandomResizedCrop slightly differ from
the behaviour of torchvision.transforms.RandomResizedCrop where, instead
of falling back to a center crop when the random crop area doesn’t fit after
10 tries, SimilarityTransform will still perform the crop and only
center it on the dimension not fitting. Due to the encoding methods used in
Benzina, this will usually result in an image with a black top border and a
smeared bottom border or a black left border and a smeared right border if
the crop area did not fit vertically or horizontally respectively.

Roadmap

Summer 2019

	Collaboration phase with researchers

	TensorFlow implementation

	
	Normalized format

	
	Specification freeze

	Dataset creation utils

	More tests

	Collaboration with researchers using new format

Autumn 2019

Conference Talk on Benzina

How to Contribute

This document is heavily based on
Contributing to Open Source Projects [https://github.com/bitprophet/contribution-guide.org/blob/master/index.rst]

Submitting bugs

Due diligence

Before submitting a bug, please do the following:

	Perform basic troubleshooting steps:

	Make sure you’re on the latest version. If you’re not on the most
recent version, your problem may have been solved already! Upgrading is
always the best first step.

	Try older versions. If you’re already on the latest release, try
rolling back a few minor versions (e.g. if on 1.7, try 1.5 or 1.6) and
see if the problem goes away. This will help the devs narrow down when
the problem first arose in the commit log.

	Try switching up dependency versions. If the software in question has
dependencies (other libraries, etc) try upgrading/downgrading those as
well.

	Search the project’s bug/issue tracker to make sure it’s not a known
issue.

	If you don’t find a pre-existing issue, consider checking with the mailing
list and/or IRC channel in case the problem is non-bug-related.

What to put in your bug report

Make sure your report gets the attention it deserves: bug reports with missing
information may be ignored or punted back to you, delaying a fix. The below
constitutes a bare minimum; more info is almost always better:

	What version of the core programming language interpreter are you using?
For example, are you using Python 3.5? Python 3.6?

	Which version or versions of the software are you using? Ideally, you
followed the advice above and have ruled out (or verified that the problem
exists in) a few different versions.

	How can the developers recreate the bug on their end? If possible,
include a copy of your code, the command you used to invoke it, and the full
output of your run (if applicable.)

	A common tactic is to pare down your code until a simple (but still
bug-causing) “base case” remains. Not only can this help you identify
problems which aren’t real bugs, but it means the developer can get to
fixing the bug faster.

Contributing changes

Licensing of contributed material

Keep in mind as you contribute, that code, docs and other material submitted to
open source projects are usually considered licensed under the same terms
as the rest of the work.

The details vary from project to project, but from the perspective of this
document’s authors:

	Anything submitted to a project falls under the licensing terms in the
repository’s top level LICENSE file.

	For example, if a project’s LICENSE is BSD-based, contributors should
be comfortable with their work potentially being distributed in binary
form without the original source code.

	Per-file copyright/license headers are typically extraneous and undesirable.
Please don’t add your own copyright headers to new files unless the project’s
license actually requires them!

	Not least because even a new file created by one individual (who often
feels compelled to put their personal copyright notice at the top) will
inherently end up contributed to by dozens of others over time, making a
per-file header outdated/misleading.

Version control branching

	Always make a new branch for your work, no matter how small. This makes
it easy for others to take just that one set of changes from your repository,
in case you have multiple unrelated changes floating around.

	A corollary: don’t submit unrelated changes in the same branch/pull
request! The maintainer shouldn’t have to reject your awesome bugfix
because the feature you put in with it needs more review.

	Base your new branch off of the appropriate branch on the main
repository:

	Bug fixes should be based on the branch named after the oldest
supported release line the bug affects.

	E.g. if a feature was introduced in 1.1, the latest release line is
1.3, and a bug is found in that feature - make your branch based on
1.1. The maintainer will then forward-port it to 1.3 and master.

	Bug fixes requiring large changes to the code or which have a chance
of being otherwise disruptive, may need to base off of master
instead. This is a judgement call – ask the devs!

	New features should branch off of the ‘master’ branch.

	Note that depending on how long it takes for the dev team to merge
your patch, the copy of master you worked off of may get out of
date! If you find yourself ‘bumping’ a pull request that’s been
sidelined for a while, make sure you rebase or merge to latest
master to ensure a speedier resolution.

Code formatting

	Follow the style you see used in the primary repository! Consistency with
the rest of the project always trumps other considerations. It doesn’t matter
if you have your own style or if the rest of the code breaks with the greater
community - just follow along.

	Python projects usually follow the PEP-8 [http://www.python.org/dev/peps/pep-0008/] guidelines (though many have
minor deviations depending on the lead maintainers’ preferences.)

Documentation isn’t optional

It’s not! Patches without documentation will be returned to sender. By
“documentation” we mean:

	Docstrings (for Python; or API-doc-friendly comments for other languages)
must be created or updated for public API functions/methods/etc. (This step
is optional for some bugfixes.)

	Don’t forget to include versionadded [http://sphinx-doc.org/markup/para.html#directive-versionadded]/versionchanged [http://sphinx-doc.org/markup/para.html#directive-versionchanged] ReST
directives at the bottom of any new or changed Python docstrings!

	Use versionadded for truly new API members – new methods,
functions, classes or modules.

	Use versionchanged when adding/removing new function/method
arguments, or whenever behavior changes.

	New features should ideally include updates to prose documentation,
including useful example code snippets.

	All submissions should have a changelog entry crediting the contributor
and/or any individuals instrumental in identifying the problem.

Full example

Here’s an example workflow for the project Benzina, which
is currently in hypothetic version 1.0.x. Your username is yourname and you’re
submitting a basic bugfix.

Preparing your Fork

	Click ‘Fork’ on Github, creating e.g. yourname/Benzina.

	Clone your project: git clone git@github.com:yourname/Benzina.

	cd Benzina

	Create and activate a virtual environment [https://packaging.python.org/tutorials/installing-packages/#creating-virtual-environments].

	Install the development requirements: pip install -r dev-requirements.txt.

	Create a branch: git checkout -b foo-the-bars 1.0.

Making your Changes

	Add changelog entry crediting yourself.

	Hack, hack, hack.

	Commit your changes: git commit -m "Foo the bars"

Creating Pull Requests

	Push your commit to get it back up to your fork: git push origin HEAD

	Visit Github, click handy “Pull request” button that it will make upon
noticing your new branch.

	In the description field, write down issue number (if submitting code fixing
an existing issue) or describe the issue + your fix (if submitting a wholly
new bugfix).

	Hit ‘submit’! And please be patient - the maintainers will get to you when
they can.

API

benzina.torch.dataloader

	
class benzina.torch.dataloader.DataLoader(dataset, shape, path=None, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, collate_fn=<sphinx.ext.autodoc.importer._MockObject object>, drop_last=False, timeout=0, device=None, multibuffering=3, seed=None, bias_transform=None, norm_transform=None, warp_transform=None)

	Loads images from a benzina.torch.dataset.Dataset. Encapsulates a sampler
and data processing transformations.

	Parameters

	
	dataset (benzina.torch.dataset.Dataset) – dataset from which to load the
data.

	shape (int or tuple of ints) – set the shape of the samples. Note that
this does not imply a resize of the image but merely set the shape
of the tensor in which the data will be copied.

	path (str, optional) – path to the archive from which samples will be
decoded. If not specified, the dataloader will attempt to get it
from dataset.

	batch_size (int, optional) – how many samples per batch to load.
(default: 1)

	shuffle (bool, optional) – set to True to have the data reshuffled
at every epoch. (default: False)

	sampler (torch.utils.data.Sampler, optional) – defines the strategy to
draw samples from the dataset. If specified, shuffle must
be False.

	batch_sampler (torch.utils.data.Sampler, optional) – like sampler, but
returns a batch of indices at a time. Mutually exclusive with
batch_size, shuffle, sampler, and
drop_last.

	collate_fn (callable, optional) – merges a list of samples to form a
mini-batch.

	drop_last (bool, optional) – set to True to drop the last incomplete
batch, if the dataset size is not divisible by the batch size. If
False and the size of dataset is not divisible by the batch
size, then the last batch will be smaller. (default: False)

	timeout (numeric, optional) – if positive, the timeout value for
collecting a batch. Should always be non-negative. (default: 0)

	device (torch.device, optional) – set the device to use. Note that only
CUDA devices are supported for the moment.

	multibuffering (int, optional) – set the size of the multibuffering
buffer. (default: 3)

	seed (int, optional) – set the seed for the random transformations.

	bias_transform (benzina.torch.operations.BiasTransform or float, optional) – set the bias transformation. Values to substract a pixel’s channels
with. Note that this transformation is applied before
norm_transform.

	norm_transform (benzina.torch.operations.NormTransform or float or iterable of float, optional) – set the normalization transformation. Values to multiply a pixel’s
channels with. Note that this transformation is applied after
bias_transform.

	warp_transform (benzina.torch.operations.WarpTransform or iterable of float, optional) – set the warp transformation or use as the arguments to initialize a
WarpTransform.

benzina.torch.dataset

	
class benzina.torch.dataset.Dataset(archive: Union[str, benzina.utils.file.Track] = None, track: Union[str, benzina.utils.file.Track] = 'bzna_input')

	
	Parameters

	
	archive (str or Track) – path to the archive or a Track. If a
Track, track will be ignored.

	track (str or Track, optional) – track label or a Track. If a
Track, archive must not be specified.
(default: "bzna_input")

	
class benzina.torch.dataset.ClassificationDataset(archive: Union[str, Tuple[Union[str, benzina.utils.file.Track], Union[str, benzina.utils.file.Track]]] = None, tracks: Tuple[Union[str, benzina.utils.file.Track], Union[str, benzina.utils.file.Track]] = ('bzna_input', 'bzna_target'), input_label: str = 'bzna_thumb')

	
	Parameters

	
	archive (str or pair of Track) – path to the archive or a pair
of Track. If a pair of Track, tracks will be ignored.

	tracks (pair of str or Track, optional) – pair of input and
target tracks labels or a pair of input and target Track. If a pair
of Track, archive must not be specified.
(default: ("bzna_input", "bzna_target"))

	input_label (str, optional) – label of the inputs to use in the input
track. (default: "bzna_thumb")

	
class benzina.torch.dataset.ImageNet(root: Union[str, Tuple[Union[str, benzina.utils.file.Track], Union[str, benzina.utils.file.Track]]] = None, split: str = None, tracks: Tuple[Union[str, benzina.utils.file.Track], Union[str, benzina.utils.file.Track]] = ('bzna_input', 'bzna_target'), input_label: str = 'bzna_thumb')

	
	Parameters

	
	root (str or pair of Track) – root of the ImageNet dataset or
path to the archive or a pair of Track. If a pair of Track,
tracks will be ignored.

	split (None or str, optional) – The dataset split, supports test,
train, val. If not specified, samples will be drawn from
all splits.

	tracks (pair of str or Track, optional) – pair of input and
target tracks labels or a pair of input and target Track. If a pair
of Track, root must not be specified.
(default: ("bzna_input", "bzna_target"))

	input_label (str, optional) – label of the inputs to use in the input
track. (default: "bzna_thumb")

benzina.torch.operations

	
class benzina.torch.operations.WarpTransform

	Interface class that represents a warp transformation as a combined rotation,
scale, skew and translation 3 x 3 matrix. The transformation is called for each
sample of a batch.

	
class benzina.torch.operations.NormTransform

	Interface class that represents a normalization transformation. The transformation
is called for each sample of a batch.

	
class benzina.torch.operations.BiasTransform

	Interface class that represents a bias transformation. The transformation
is called for each sample of a batch.

	
class benzina.torch.operations.ConstantWarpTransform(warp=(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0))

	Represents a constant warp transformation to be applied on each sample of a
batch independently of its index.

	Parameters

	warp (iterable of numerics, optional) – a flatten, row-major 3 x 3 warp matrix
(default: flatten identity matrix).

	
class benzina.torch.operations.ConstantNormTransform(norm=(1.0, 1.0, 1.0))

	Represents a constant norm transformation to be applied on each sample of a
batch independently of its index.

	Parameters

	norm (numeric or iterable of numerics, optional) – an iterable in RGB order
containing the normalization constant of a sample’s RGB channels. Components
will be multiplied to the respective channels of a sample
(default: (1.0, 1.0, 1.0)).

	
class benzina.torch.operations.ConstantBiasTransform(bias=(0.0, 0.0, 0.0))

	Represents a constant bias transformation to be applied on each sample of a
batch independently of its index.

	Parameters

	bias (numeric or iterable of numerics, optional) – an iterable in RGB order
containing the bias of a sample’s RGB channels. Components will be
substracted to the respective channels of a sample (default: (0.0, 0.0, 0.0)).

	
class benzina.torch.operations.SimilarityTransform(scale=(1.0, 1.0), ratio=None, degrees=(-0.0, 0.0), translate=(0.0, 0.0), flip_h=0.0, flip_v=0.0, resize=False, keep_ratio=False, random_crop=False)

	Similarity warp transformation of the image keeping center invariant.

A crop of random size, aspect ratio and location is made. This crop can
then be flipped and/or rotated to finally be resized to output size.

	Parameters

	
	scale (Sequence or float or int, optional) – crop area scaling factor
interval, e.g (a, b), then scale is randomly sampled from the range
a <= scale <= b. If scale is a number instead of sequence, the
range of scale will be (scale^-1, scale).
(default: (+1.0, +1.0))

	ratio (Sequence or float or int, optional) – range of crop aspect ratio.
If ratio is a number instead of sequence like (min, max), the range
of aspect ratio will be (ratio^-1, ratio). Will keep original
aspect ratio by default.

	degrees (Sequence or float or int, optional) – range of degrees to
select from. If degrees is a number instead of sequence like
(min, max), the range of degrees will be (-degrees, +degrees).
(default: (-0.0, +0.0))

	translate (Sequence or float or int, optional) – sequence of maximum
absolute fraction for horizontal and vertical translations. For
example translate=(a, b), then horizontal shift is randomly sampled
in the range -output_width * a < dx < output_width * a and vertical
shift is randomly sampled in the range
-output_height * b < dy < output_height * b. If translate is a
number instead of sequence, translate will be
(translate, translate). These translations are applied
independently from random_crop. (default: (0.0, 0.0))

	flip_h (bool, optional) – probability of the image being flipped
horizontally. (default: +0.0)

	flip_v (bool, optional) – probability of the image being flipped
vertically. (default: +0.0)

	resize (bool, optional) – resize the cropped image to fit the output
size. It is forced to True if scale or ratio
are specified. (default: False)

	keep_ratio (bool, optional) – match the smaller edge to the
corresponding output edge size, keeping the aspect ratio after
resize. Has no effect if resize is False.
(default: False)

	random_crop (bool, optional) – randomly crop the image instead of
a center crop. (default: False)

	
class benzina.torch.operations.RandomResizedCrop(scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333))

	Crop to random size, aspect ratio and location.

A crop of random size, aspect ratio and location is made. This crop is
finally resized to output size.

This is popularly used to train the Inception networks.

	Parameters

	
	scale (Sequence or float or int, optional) – crop area scaling factor
interval, e.g (a, b), then scale is randomly sampled from the range
a <= scale <= b. If scale is a number instead of sequence, the
range of scale will be (scale^-1, scale).
(default: (+0.08, +1.0))

	ratio (Sequence or float or int, optional) – range of crop aspect ratio.
If ratio is a number instead of sequence like (min, max), the range
of aspect ratio will be (ratio^-1, ratio). Will keep original
aspect ratio by default. (default: (3./4., 4./3.))

	
class benzina.torch.operations.CenterResizedCrop(scale=1.0, keep_ratio=True)

	Crops at the center and resize.

A crop at the center is made then resized to the output size.

	Parameters

	
	scale (float or int, optional) – edges scaling factor.
(default: +1.0)

	keep_ratio (bool, optional) – match the smaller edge to the
corresponding output edge size, keeping the aspect ratio after
resize. Has no effect if resize is False.
(default: False)

	
benzina.torch.operations.compute_affine_matrix(in_shape, out_shape, crop=None, degrees=0.0, translate=(0.0, 0.0), flip_h=False, flip_v=False, resize=False, keep_ratio=False)

	Similarity warp transformation of the image keeping center invariant.

	Parameters

	
	in_shape (Sequence) – the shape of the input image

	out_shape (Sequence) – the shape of the output image

	crop (Sequence, optional) – crop center location, width and height. The
center location is relative to the center of the image. If
resize is not True, crop is simply a translation in the
in_shape space.

	degrees (float or int, optional) – degrees to rotate the crop.
(default: (0.0))

	translate (Sequence, optional) – horizontal and vertical translations.
(default: (0.0, 0.0))

	flip_h (bool, optional) – flip the image horizontally.
(default: False)

	flip_v (bool, optional) – flip the image vertically.
(default: False)

	resize (bool, optional) – resize the cropped image to fit the output’s
size. (default: False)

	keep_ratio (bool, optional) – match the smaller edge to the
corresponding output edge size, keeping the aspect ratio after
resize. Has no effect if resize is False.
(default: False)

Index

Description of the project

Benzina is an image loading library that accelerates image loading and preprocessing
by making use of the hardware decoder in NVIDIA’s GPUs.

Since it minimize the use of the CPU and of the GPU computing units, it’s easier
to reach saturation of GPU computing power / CPU. In our tests using ResNet18 models
in PyTorch on the ImageNet 2012 dataset, we could observe an increase by 2.4x the
amount of images loaded, preprocessed then processed by the model when using a
single CPU and GPU:

	Data loader

	CPU

	CPU Workers

	GPU

	GPU compute speed

	Pipeline effective speed

	PyTorch ImageFolder

	Intel Xeon E5-2623*

	2

	Tesla V100*

	1050 img/s

	400 img/s

	Benzina

	Intel Xeon E5-2623*

	1

	Tesla V100*

	1050 img/s

	960 img/s

Note

	Intel Xeon E5-2623 is the Xeon E5-2623 v3 @ 3.00 GHz version

	Tesla V100 is the Tesla V100 PCIE 16GB version

The name “Benzina” is a phonetic transliteration of the Ukrainian word “Бензина”, meaning “gasoline” (or “petrol”).

 [image: pypi] [https://pypi.python.org/pypi/benzina] [image: docs] [https://benzina.readthedocs.io/en/latest]

benzina.torch.dataloader

	
class benzina.torch.dataloader.DataLoader(dataset, shape, path=None, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, collate_fn=<sphinx.ext.autodoc.importer._MockObject object>, drop_last=False, timeout=0, device=None, multibuffering=3, seed=None, bias_transform=None, norm_transform=None, warp_transform=None)

	Loads images from a benzina.torch.dataset.Dataset. Encapsulates a sampler
and data processing transformations.

	Parameters

	
	dataset (benzina.torch.dataset.Dataset) – dataset from which to load the
data.

	shape (int or tuple of ints) – set the shape of the samples. Note that
this does not imply a resize of the image but merely set the shape
of the tensor in which the data will be copied.

	path (str, optional) – path to the archive from which samples will be
decoded. If not specified, the dataloader will attempt to get it
from dataset.

	batch_size (int, optional) – how many samples per batch to load.
(default: 1)

	shuffle (bool, optional) – set to True to have the data reshuffled
at every epoch. (default: False)

	sampler (torch.utils.data.Sampler, optional) – defines the strategy to
draw samples from the dataset. If specified, shuffle must
be False.

	batch_sampler (torch.utils.data.Sampler, optional) – like sampler, but
returns a batch of indices at a time. Mutually exclusive with
batch_size, shuffle, sampler, and
drop_last.

	collate_fn (callable, optional) – merges a list of samples to form a
mini-batch.

	drop_last (bool, optional) – set to True to drop the last incomplete
batch, if the dataset size is not divisible by the batch size. If
False and the size of dataset is not divisible by the batch
size, then the last batch will be smaller. (default: False)

	timeout (numeric, optional) – if positive, the timeout value for
collecting a batch. Should always be non-negative. (default: 0)

	device (torch.device, optional) – set the device to use. Note that only
CUDA devices are supported for the moment.

	multibuffering (int, optional) – set the size of the multibuffering
buffer. (default: 3)

	seed (int, optional) – set the seed for the random transformations.

	bias_transform (benzina.torch.operations.BiasTransform or float, optional) – set the bias transformation. Values to substract a pixel’s channels
with. Note that this transformation is applied before
norm_transform.

	norm_transform (benzina.torch.operations.NormTransform or float or iterable of float, optional) – set the normalization transformation. Values to multiply a pixel’s
channels with. Note that this transformation is applied after
bias_transform.

	warp_transform (benzina.torch.operations.WarpTransform or iterable of float, optional) – set the warp transformation or use as the arguments to initialize a
WarpTransform.

benzina.torch.dataset

	
class benzina.torch.dataset.Dataset(archive: Union[str, benzina.utils.file.Track] = None, track: Union[str, benzina.utils.file.Track] = 'bzna_input')

	
	Parameters

	
	archive (str or Track) – path to the archive or a Track. If a
Track, track will be ignored.

	track (str or Track, optional) – track label or a Track. If a
Track, archive must not be specified.
(default: "bzna_input")

	
class benzina.torch.dataset.ClassificationDataset(archive: Union[str, Tuple[Union[str, benzina.utils.file.Track], Union[str, benzina.utils.file.Track]]] = None, tracks: Tuple[Union[str, benzina.utils.file.Track], Union[str, benzina.utils.file.Track]] = ('bzna_input', 'bzna_target'), input_label: str = 'bzna_thumb')

	
	Parameters

	
	archive (str or pair of Track) – path to the archive or a pair
of Track. If a pair of Track, tracks will be ignored.

	tracks (pair of str or Track, optional) – pair of input and
target tracks labels or a pair of input and target Track. If a pair
of Track, archive must not be specified.
(default: ("bzna_input", "bzna_target"))

	input_label (str, optional) – label of the inputs to use in the input
track. (default: "bzna_thumb")

	
class benzina.torch.dataset.ImageNet(root: Union[str, Tuple[Union[str, benzina.utils.file.Track], Union[str, benzina.utils.file.Track]]] = None, split: str = None, tracks: Tuple[Union[str, benzina.utils.file.Track], Union[str, benzina.utils.file.Track]] = ('bzna_input', 'bzna_target'), input_label: str = 'bzna_thumb')

	
	Parameters

	
	root (str or pair of Track) – root of the ImageNet dataset or
path to the archive or a pair of Track. If a pair of Track,
tracks will be ignored.

	split (None or str, optional) – The dataset split, supports test,
train, val. If not specified, samples will be drawn from
all splits.

	tracks (pair of str or Track, optional) – pair of input and
target tracks labels or a pair of input and target Track. If a pair
of Track, root must not be specified.
(default: ("bzna_input", "bzna_target"))

	input_label (str, optional) – label of the inputs to use in the input
track. (default: "bzna_thumb")

benzina.torch.operations

	
class benzina.torch.operations.WarpTransform

	Interface class that represents a warp transformation as a combined rotation,
scale, skew and translation 3 x 3 matrix. The transformation is called for each
sample of a batch.

	
class benzina.torch.operations.NormTransform

	Interface class that represents a normalization transformation. The transformation
is called for each sample of a batch.

	
class benzina.torch.operations.BiasTransform

	Interface class that represents a bias transformation. The transformation
is called for each sample of a batch.

	
class benzina.torch.operations.ConstantWarpTransform(warp=(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0))

	Represents a constant warp transformation to be applied on each sample of a
batch independently of its index.

	Parameters

	warp (iterable of numerics, optional) – a flatten, row-major 3 x 3 warp matrix
(default: flatten identity matrix).

	
class benzina.torch.operations.ConstantNormTransform(norm=(1.0, 1.0, 1.0))

	Represents a constant norm transformation to be applied on each sample of a
batch independently of its index.

	Parameters

	norm (numeric or iterable of numerics, optional) – an iterable in RGB order
containing the normalization constant of a sample’s RGB channels. Components
will be multiplied to the respective channels of a sample
(default: (1.0, 1.0, 1.0)).

	
class benzina.torch.operations.ConstantBiasTransform(bias=(0.0, 0.0, 0.0))

	Represents a constant bias transformation to be applied on each sample of a
batch independently of its index.

	Parameters

	bias (numeric or iterable of numerics, optional) – an iterable in RGB order
containing the bias of a sample’s RGB channels. Components will be
substracted to the respective channels of a sample (default: (0.0, 0.0, 0.0)).

	
class benzina.torch.operations.SimilarityTransform(scale=(1.0, 1.0), ratio=None, degrees=(-0.0, 0.0), translate=(0.0, 0.0), flip_h=0.0, flip_v=0.0, resize=False, keep_ratio=False, random_crop=False)

	Similarity warp transformation of the image keeping center invariant.

A crop of random size, aspect ratio and location is made. This crop can
then be flipped and/or rotated to finally be resized to output size.

	Parameters

	
	scale (Sequence or float or int, optional) – crop area scaling factor
interval, e.g (a, b), then scale is randomly sampled from the range
a <= scale <= b. If scale is a number instead of sequence, the
range of scale will be (scale^-1, scale).
(default: (+1.0, +1.0))

	ratio (Sequence or float or int, optional) – range of crop aspect ratio.
If ratio is a number instead of sequence like (min, max), the range
of aspect ratio will be (ratio^-1, ratio). Will keep original
aspect ratio by default.

	degrees (Sequence or float or int, optional) – range of degrees to
select from. If degrees is a number instead of sequence like
(min, max), the range of degrees will be (-degrees, +degrees).
(default: (-0.0, +0.0))

	translate (Sequence or float or int, optional) – sequence of maximum
absolute fraction for horizontal and vertical translations. For
example translate=(a, b), then horizontal shift is randomly sampled
in the range -output_width * a < dx < output_width * a and vertical
shift is randomly sampled in the range
-output_height * b < dy < output_height * b. If translate is a
number instead of sequence, translate will be
(translate, translate). These translations are applied
independently from random_crop. (default: (0.0, 0.0))

	flip_h (bool, optional) – probability of the image being flipped
horizontally. (default: +0.0)

	flip_v (bool, optional) – probability of the image being flipped
vertically. (default: +0.0)

	resize (bool, optional) – resize the cropped image to fit the output
size. It is forced to True if scale or ratio
are specified. (default: False)

	keep_ratio (bool, optional) – match the smaller edge to the
corresponding output edge size, keeping the aspect ratio after
resize. Has no effect if resize is False.
(default: False)

	random_crop (bool, optional) – randomly crop the image instead of
a center crop. (default: False)

	
class benzina.torch.operations.RandomResizedCrop(scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333))

	Crop to random size, aspect ratio and location.

A crop of random size, aspect ratio and location is made. This crop is
finally resized to output size.

This is popularly used to train the Inception networks.

	Parameters

	
	scale (Sequence or float or int, optional) – crop area scaling factor
interval, e.g (a, b), then scale is randomly sampled from the range
a <= scale <= b. If scale is a number instead of sequence, the
range of scale will be (scale^-1, scale).
(default: (+0.08, +1.0))

	ratio (Sequence or float or int, optional) – range of crop aspect ratio.
If ratio is a number instead of sequence like (min, max), the range
of aspect ratio will be (ratio^-1, ratio). Will keep original
aspect ratio by default. (default: (3./4., 4./3.))

	
class benzina.torch.operations.CenterResizedCrop(scale=1.0, keep_ratio=True)

	Crops at the center and resize.

A crop at the center is made then resized to the output size.

	Parameters

	
	scale (float or int, optional) – edges scaling factor.
(default: +1.0)

	keep_ratio (bool, optional) – match the smaller edge to the
corresponding output edge size, keeping the aspect ratio after
resize. Has no effect if resize is False.
(default: False)

	
benzina.torch.operations.compute_affine_matrix(in_shape, out_shape, crop=None, degrees=0.0, translate=(0.0, 0.0), flip_h=False, flip_v=False, resize=False, keep_ratio=False)

	Similarity warp transformation of the image keeping center invariant.

	Parameters

	
	in_shape (Sequence) – the shape of the input image

	out_shape (Sequence) – the shape of the output image

	crop (Sequence, optional) – crop center location, width and height. The
center location is relative to the center of the image. If
resize is not True, crop is simply a translation in the
in_shape space.

	degrees (float or int, optional) – degrees to rotate the crop.
(default: (0.0))

	translate (Sequence, optional) – horizontal and vertical translations.
(default: (0.0, 0.0))

	flip_h (bool, optional) – flip the image horizontally.
(default: False)

	flip_v (bool, optional) – flip the image vertically.
(default: False)

	resize (bool, optional) – resize the cropped image to fit the output’s
size. (default: False)

	keep_ratio (bool, optional) – match the smaller edge to the
corresponding output edge size, keeping the aspect ratio after
resize. Has no effect if resize is False.
(default: False)

benzina.utils.file

Contributing changes

Licensing of contributed material

Keep in mind as you contribute, that code, docs and other material submitted to
open source projects are usually considered licensed under the same terms
as the rest of the work.

The details vary from project to project, but from the perspective of this
document’s authors:

	Anything submitted to a project falls under the licensing terms in the
repository’s top level LICENSE file.

	For example, if a project’s LICENSE is BSD-based, contributors should
be comfortable with their work potentially being distributed in binary
form without the original source code.

	Per-file copyright/license headers are typically extraneous and undesirable.
Please don’t add your own copyright headers to new files unless the project’s
license actually requires them!

	Not least because even a new file created by one individual (who often
feels compelled to put their personal copyright notice at the top) will
inherently end up contributed to by dozens of others over time, making a
per-file header outdated/misleading.

Version control branching

	Always make a new branch for your work, no matter how small. This makes
it easy for others to take just that one set of changes from your repository,
in case you have multiple unrelated changes floating around.

	A corollary: don’t submit unrelated changes in the same branch/pull
request! The maintainer shouldn’t have to reject your awesome bugfix
because the feature you put in with it needs more review.

	Base your new branch off of the appropriate branch on the main
repository:

	Bug fixes should be based on the branch named after the oldest
supported release line the bug affects.

	E.g. if a feature was introduced in 1.1, the latest release line is
1.3, and a bug is found in that feature - make your branch based on
1.1. The maintainer will then forward-port it to 1.3 and master.

	Bug fixes requiring large changes to the code or which have a chance
of being otherwise disruptive, may need to base off of master
instead. This is a judgement call – ask the devs!

	New features should branch off of the ‘master’ branch.

	Note that depending on how long it takes for the dev team to merge
your patch, the copy of master you worked off of may get out of
date! If you find yourself ‘bumping’ a pull request that’s been
sidelined for a while, make sure you rebase or merge to latest
master to ensure a speedier resolution.

Code formatting

	Follow the style you see used in the primary repository! Consistency with
the rest of the project always trumps other considerations. It doesn’t matter
if you have your own style or if the rest of the code breaks with the greater
community - just follow along.

	Python projects usually follow the PEP-8 [http://www.python.org/dev/peps/pep-0008/] guidelines (though many have
minor deviations depending on the lead maintainers’ preferences.)

Documentation isn’t optional

It’s not! Patches without documentation will be returned to sender. By
“documentation” we mean:

	Docstrings (for Python; or API-doc-friendly comments for other languages)
must be created or updated for public API functions/methods/etc. (This step
is optional for some bugfixes.)

	Don’t forget to include versionadded [http://sphinx-doc.org/markup/para.html#directive-versionadded]/versionchanged [http://sphinx-doc.org/markup/para.html#directive-versionchanged] ReST
directives at the bottom of any new or changed Python docstrings!

	Use versionadded for truly new API members – new methods,
functions, classes or modules.

	Use versionchanged when adding/removing new function/method
arguments, or whenever behavior changes.

	New features should ideally include updates to prose documentation,
including useful example code snippets.

	All submissions should have a changelog entry crediting the contributor
and/or any individuals instrumental in identifying the problem.

Full example

Here’s an example workflow for the project Benzina, which
is currently in hypothetic version 1.0.x. Your username is yourname and you’re
submitting a basic bugfix.

Preparing your Fork

	Click ‘Fork’ on Github, creating e.g. yourname/Benzina.

	Clone your project: git clone git@github.com:yourname/Benzina.

	cd Benzina

	Create and activate a virtual environment [https://packaging.python.org/tutorials/installing-packages/#creating-virtual-environments].

	Install the development requirements: pip install -r dev-requirements.txt.

	Create a branch: git checkout -b foo-the-bars 1.0.

Making your Changes

	Add changelog entry crediting yourself.

	Hack, hack, hack.

	Commit your changes: git commit -m "Foo the bars"

Creating Pull Requests

	Push your commit to get it back up to your fork: git push origin HEAD

	Visit Github, click handy “Pull request” button that it will make upon
noticing your new branch.

	In the description field, write down issue number (if submitting code fixing
an existing issue) or describe the issue + your fix (if submitting a wholly
new bugfix).

	Hit ‘submit’! And please be patient - the maintainers will get to you when
they can.

Submitting bugs

Due diligence

Before submitting a bug, please do the following:

	Perform basic troubleshooting steps:

	Make sure you’re on the latest version. If you’re not on the most
recent version, your problem may have been solved already! Upgrading is
always the best first step.

	Try older versions. If you’re already on the latest release, try
rolling back a few minor versions (e.g. if on 1.7, try 1.5 or 1.6) and
see if the problem goes away. This will help the devs narrow down when
the problem first arose in the commit log.

	Try switching up dependency versions. If the software in question has
dependencies (other libraries, etc) try upgrading/downgrading those as
well.

	Search the project’s bug/issue tracker to make sure it’s not a known
issue.

	If you don’t find a pre-existing issue, consider checking with the mailing
list and/or IRC channel in case the problem is non-bug-related.

What to put in your bug report

Make sure your report gets the attention it deserves: bug reports with missing
information may be ignored or punted back to you, delaying a fix. The below
constitutes a bare minimum; more info is almost always better:

	What version of the core programming language interpreter are you using?
For example, are you using Python 3.5? Python 3.6?

	Which version or versions of the software are you using? Ideally, you
followed the advice above and have ruled out (or verified that the problem
exists in) a few different versions.

	How can the developers recreate the bug on their end? If possible,
include a copy of your code, the command you used to invoke it, and the full
output of your run (if applicable.)

	A common tactic is to pare down your code until a simple (but still
bug-causing) “base case” remains. Not only can this help you identify
problems which aren’t real bugs, but it means the developer can get to
fixing the bug faster.

ImageNet loading in PyTorch

As long as your dataset is converted into Benzina’s data format, you can load
it to train a PyTorch model in a few lines of code. Here is an example
demonstrating how this can be done with an ImageNet dataset. It is based on the
ImageNet example from PyTorch [https://github.com/pytorch/examples/tree/master/imagenet]

import torch
import benzina.torch as bz
import benzina.torch.operations as ops

seed = 1234
torch.manual_seed(seed)

Dataset
train_dataset = bz.dataset.ImageNet("path/to/dataset", split="train")
val_dataset = bz.dataset.ImageNet("path/to/dataset", split="val")

Dataloaders
bias = ops.ConstantBiasTransform(bias=(0.485 * 255, 0.456 * 255, 0.406 * 255))
std = ops.ConstantNormTransform(norm=(0.229 * 255, 0.224 * 255, 0.225 * 255))

train_loader = bz.DataLoader(
 train_dataset,
 shape=(224, 224),
 batch_size=256,
 shuffle=True,
 seed=seed,
 bias_transform=bias,
 norm_transform=std,
 warp_transform=ops.SimilarityTransform(scale=(0.08, 1.0),
 ratio=(3./4., 4./3.),
 flip_h=0.5,
 random_crop=True))
val_loader = bz.DataLoader(
 val_dataset,
 shape=(224, 224),
 batch_size=256,
 shuffle=False,
 seed=seed,
 bias_transform=bias,
 norm_transform=std,
 warp_transform=ops.CenterResizedCrop(224/256)))

for epoch in range(1, 10):
 # train for one epoch
 train(train_dataloader, ...)

 # evaluate on validation set
 accuracy = validate(valid_dataloader, ...)

In the example above, two benzina.torch.dataset.ImageNet are first created
with the location of the dataset and the desired split specified.

Note

To be able to quickly load your dataset with the hardware decoder of a GPU,
Benzina needs the data to be converted in its own format embedding H.265
images.

train_dataset = bz.dataset.ImageNet("path/to/dataset", split="train")
val_dataset = bz.dataset.ImageNet("path/to/dataset", split="val")

Then the transformations to apply to the dataset are defined. It is usually a
good idea to normalize the data based on its statistical bias and standard
deviation which can be done with Benzina by using its
benzina.torch.operations.ConstantBiasTransform and
benzina.torch.operations.ConstantNormTransform respectively.

Note

	benzina.torch.operations.ConstantBiasTransform will substract the bias
from the images’ RGB channels

	benzina.torch.operations.ConstantNormTransform will multiply the norm
with the images’ RGB channels

bias = ops.ConstantBiasTransform(bias=(123.675, 116.28 , 103.53))
std = ops.ConstantNormTransform(norm=(58.395, 57.12 , 57.375))

The dataloaders are now ready to be instantiated. In this example, the
dataset’s images are all of size 512 x 512 by the dataset specifications. A
random crop resized to 224 x 224 and a random horizontal flip will be applied
to the images prior feeding them to the model. In Benzina, this is done by
defining the size of the output tensor with the dataloader’s shape argument
and using Benzina’s similarity transform.

In the case of the validation transform, an alias to a specific similarity
transform, which applies a center crop of edges scale 224 / 256, resize the
cropped section to have its smaller edge matched to 224 then center a crop of
224 x 224. Another maybe more intuitive way to describe this transformation is
to see it as a resize to have the smaller edge matched to 256 then center a
crop of 224 x 224.

Note

It’s useful to know that benzina.torch.operations.SimilarityTransform
will automatically center the output frame on the center of the input image.
This makes a vanilla benzina.torch.operations.SimilarityTransform
equivalent a center crop of size of the output.

train_loader = bz.DataLoader(
 train_dataset,
 shape=(224, 224),
 batch_size=256,
 shuffle=True,
 seed=seed,
 bias_transform=bias,
 norm_transform=std,
 warp_transform=ops.SimilarityTransform(scale=(0.08, 1.0),
 ratio=(3./4., 4./3.),
 flip_h=0.5,
 random_crop=True))
val_loader = bz.DataLoader(
 val_dataset,
 shape=(224, 224),
 batch_size=256,
 shuffle=False,
 seed=seed,
 bias_transform=bias,
 norm_transform=std,
 warp_transform=ops.CenterResizedCrop(224/256))

As demonstrated in the full example loading ImageNet to feed a PyTorch model [https://github.com/obilaniu/Benzina/blob/master/Users/satya/travail/examples/python/imagenet],
code change between a pure PyTorch implementation and an implementation using
Benzina holds in only a few lines.

$ diff -ty --suppress-common-lines examples/python/imagenet/main.py examples/python/imagenet/imagenet_pytorch.py

 > import torchvision.transforms as transforms
 > import torchvision.datasets as datasets
Benzina ### <
import benzina.torch as bz <
import benzina.torch.operations as ops <
Benzina - end ### <
 <
 > parser.add_argument('-j', '--workers', default=4, type=int, met
 > help='number of data loading workers (defau
 ### Benzina ### | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406]
 train_dataset = bz.dataset.ImageNet(args.data, split="train | std=[0.229, 0.224, 0.225])
 <
 bias = ops.ConstantBiasTransform(bias=(0.485 * 255, 0.456 * <
 std = ops.ConstantNormTransform(norm=(0.229 * 255, 0.224 * <
 train_loader = bz.DataLoader(| train_dataset = datasets.ImageNet(
 train_dataset, shape=(224, 224), batch_size=args.batch_ | args.data, "train",
 shuffle=True, seed=args.seed, | transforms.Compose([
 bias_transform=bias, | transforms.RandomResizedCrop(224),
 norm_transform=std, | transforms.RandomHorizontalFlip(),
 warp_transform=ops.SimilarityTransform(| transforms.ToTensor(),
 scale=(0.08, 1.0), | normalize,
 ratio=(3./4., 4./3.), |]))
 flip_h=0.5, |
 random_crop=True)) | train_loader = torch.utils.data.DataLoader(
 | train_dataset, batch_size=args.batch_size, shuffle=True
 val_loader = bz.DataLoader(| num_workers=args.workers, pin_memory=True)
 bz.dataset.ImageNet(args.data, split="val"), shape=(224 |
 batch_size=args.batch_size, shuffle=args.batch_size, se | val_loader = torch.utils.data.DataLoader(
 bias_transform=bias, | datasets.ImageNet(args.data, "val", transforms.Compose(
 norm_transform=std, | transforms.Resize(256),
 warp_transform=ops.CenterResizedCrop(224/256)) | transforms.CenterCrop(224),
 ### Benzina - end ### | transforms.ToTensor(),
 > normalize,
 >])),
 > batch_size=args.batch_size, shuffle=False,
 > num_workers=args.workers, pin_memory=True)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Бензина / Benzina

 		
 Examples

 		
 ImageNet loading in PyTorch

 		
 Datasets List

 		
 General Description of a Dataset

 		
 Dataset Composition

 		
 Dataset Structure

 		
 ImageNet 2012

 		
 Dataset Composition

 		
 Dataset Structure

 		
 Objectives

 		
 Further feature points

 		
 Known limitations and important notes

 		
 As of September 2020

 		
 Roadmap

 		
 Summer 2019

 		
 Autumn 2019

 		
 How to Contribute

 		
 Submitting bugs

 		
 Due diligence

 		
 What to put in your bug report

 		
 Contributing changes

 		
 Licensing of contributed material

 		
 Version control branching

 		
 Code formatting

 		
 Documentation isn’t optional

 		
 Full example

 		
 API

 		
 benzina.torch.dataloader

 		
 benzina.torch.dataset

 		
 benzina.torch.operations

_static/up-pressed.png

_static/up.png

